6 MONTHS LATER...
<table>
<thead>
<tr>
<th>Email Address</th>
<th>Name</th>
<th>Re: Re: Re: Re: Re: Re: Re: Re: Re: Re: Re:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael Bernstein</td>
<td>Michael Bernstein</td>
<td>Re: Re: Re:</td>
</tr>
<tr>
<td>John Mitchell</td>
<td>John Mitchell</td>
<td>Re: Re: Re:</td>
</tr>
<tr>
<td>James Landay</td>
<td>James Landay</td>
<td>Re: Re: Re:</td>
</tr>
<tr>
<td>Michael Bernstein</td>
<td>Michael Bernstein</td>
<td>Re: Re: Re:</td>
</tr>
<tr>
<td>Fei-Fei Li</td>
<td>Fei-Fei Li</td>
<td>Re: Re: Re:</td>
</tr>
<tr>
<td>Dorsa Sadigh</td>
<td>Dorsa Sadigh</td>
<td>Re: Re: Re:</td>
</tr>
<tr>
<td>Michael Bernstein</td>
<td>Michael Bernstein</td>
<td>Re: Re: Re:</td>
</tr>
</tbody>
</table>
Today: how do we govern and decide? And can we go beyond being there?

<table>
<thead>
<tr>
<th>Email</th>
<th>Name</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>💌</td>
<td>James Landay</td>
<td>Re: Re: Re: Re: Re: Re: Re: Re: Re: Re: Re:</td>
</tr>
<tr>
<td>💌</td>
<td>Michael Bernstein</td>
<td>Re: Re: Re:</td>
</tr>
<tr>
<td>💌</td>
<td>Fei-Fei Li</td>
<td>Re: Re: Re:</td>
</tr>
<tr>
<td>💌</td>
<td>Dorsa Sadigh</td>
<td>Re: Re: Re:</td>
</tr>
<tr>
<td>💌</td>
<td>Michael Bernstein</td>
<td>Re: Re: Re:</td>
</tr>
</tbody>
</table>
Today: how do we govern and decide? And can we go beyond being there?

Outline:
- Judgment between options
- Governance in online groups
- Social computing systems supporting democratic governance

<table>
<thead>
<tr>
<th>Email</th>
<th>Fei-Fei Li</th>
<th>Re: Re: Re:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dorsa Sadigh</td>
<td>Re: Re: Re:</td>
</tr>
<tr>
<td></td>
<td>Michael Bernstein</td>
<td>Re: Re: Re:</td>
</tr>
</tbody>
</table>

Today: how do we govern and decide? And can we go beyond being there?

Outline:
- Judgment between options
- Governance in online groups
- Social computing systems supporting democratic governance
Governance

“In democratic countries the science of association is the mother science; the progress of all the others depends on the progress of that one.”
– Alexis de Tocqueville, 1835
Zuck on governance

“...marketplace of ideas. “The core job of what we do is building products that help people connect and communicate,” he said. “It’s actually quite different from the work of governing a community.” He hoped to separate

With its size, Facebook has amassed outsized powers. “In a lot of ways Facebook is more like a government than a traditional company,” Zuckerberg has said. “We have this large community of people, and more than other technology companies we’re really setting policies.”
“I was interested in this governance experiment, so I joined the network shortly before the Omidyars [...] pledged to contribute an initial $25,000 to a group or groups chosen by the community. Thus began a massive meta thrash. [...] Probably around 1000 people checked out the conversation thread, around 200 participated in the conversation, and around 25 people contributed the majority of the posts, which ended up numbering in the thousands. Attempts at consensus continued to fail on minority objections. My contributions to the conversation thread consisted largely of unheeded warnings that without a clear decision-making procedure, this conversation was doomed to be an infinite meta rathole.”
Michael’s take

There is no way to separate the work of connecting groups from the work of governing those groups.

Any group that convenes, sooner or later, requires governance.

Not having governance is itself a design decision, and a decision that invites smoky back room governance: a “tyranny of structurelessness” [Freeman 1970]
The current experiment: an independent judiciary body that reviews cases from Facebook and is intended to establish precedent in its moderation policies.
Why is this hard?

Recall **convergence**: crowds are excellent at generating ideas and at spreading awareness, but it’s much more challenging for them to build consensus toward a single action.

The same features that make it easy to gather online also make it easy to disperse. [Salehi et al. 2015]

The New York Times

Twitter Users Split on Boycott Over Platform’s Move Against Rose McGowan
But what makes convergence hard?

Convergence requires giving up on ideas, which in turn requires building trust in other members and in the group.

Add in all the features we’ve discussed previously — disinhibition, sparse social signals, preponderance of weak ties — and trust is hard to build.

Asynchronous discussion means that there’s no pressure to ever end the deliberation.
Structured debate

Deliberation: add metadata so that similar arguments get merged and replies get connected to the original argument.
Should we License marijuana production, distribution, and possession?

Top Cons

Dispensary growers and employees are still at risk from the Federal Government.
10/7/2012, 0 comments

Any revenue raised can be seized by the Federal Government.
10/7/2012, 0 comments

Pointless to legalize, the fed's won't let you have it (read more)

Top Pros

Legalizing marijuana and taxing sales would generate more revenue for the state.
9/6/2012, 1 comment

"Creating" criminals for something that's no different than alcohol use, which is legal, ruins lives unnecessarily and burdens society
10/5/2012, 2 comments
Are these designs enough to craft decisions? If not, what would it take?

[2min]

GMOs Are Good

Last updated: March 7, 2019

In its broadest sense, a genetically modified organism (GMO) refers to an organism whose genetic material has been altered in a way that does not occur naturally. Genes change naturally, either by mating or by natural recombination. But in this case, genetic fragments are scientifically inserted into the DNA of another organism to transform its collective genetic makeup, a process known as gene splicing. In plant and animal biotechnology, there are three fundamental areas that genetic modification is concerned with; the quality of

Yes because...

Production of Edible Medicine and Vaccines

This is perhaps the most innovative application of GMO. This process involves the modification of animal and plant genes in order to yield edible output with preventive molecules, for example milk, eggs and fruit. Edible vaccines, produced in milk or fruit could ease manufacturing and distribution costs by making it globally accessible to people. Vaccination through injection has many disadvantages, including the need for medically trained staff, high costs, not to mention constant cooling during transportation and storage. Use of needles also increases the risk of infections. In these cases, an edible vaccine comes in handy. In recent years, there have been examples of transgenic plants developed by researchers to help developing countries. *Transgenic* potatoes which contain cholera toxins have been developed to immunize against diseases. In 2004, the Pharma-Planta Programme was granted 12 million euros to develop genetically modified plants to help grow vaccines against tuberculosis and rabies.

No because...

It is important to note that development of edible vaccines is still at very early stages. So far, the benefits outlined are only human-centric. It has not been articulated clearly how implementation of this...
<table>
<thead>
<tr>
<th>Name</th>
<th>Email Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael Bernstein</td>
<td>Re: Re: Re:</td>
</tr>
<tr>
<td>John Mitchell</td>
<td>Re: Re: Re:</td>
</tr>
<tr>
<td>James Landay</td>
<td>Re: Re: Re:</td>
</tr>
<tr>
<td>Michael Bernstein</td>
<td>Re: Re: Re:</td>
</tr>
<tr>
<td>Fei-Fei Li</td>
<td>Re: Re: Re:</td>
</tr>
</tbody>
</table>
stalling
friction

Losing momentum, no viable path
Outright flaming or violent disagreement

scylla and charibdis...

[Salehi et al. 2015]
Work required to overcome stalling and friction [Salehi et al. 2015]

Deliberative publics require special action to preserve their momentum. Example behaviors include:

- debates with deadlines
- act and undo

This labor cannot be written into software: it consists of human scripts undertaken by moderators or trusted others.
Michael’s take

Adding metadata to discussion is helpful usability-wise, but is no panacea.

In contrast, structuring the rules and roles by which we’re able to engage with each other is much more likely to produce productive deliberation.

Most online communication tools such as email fail at deliberation because they don’t structure those rules and roles. We just continue to ricochet from stalling to friction and back.
So, what do we do?

Successful communities develop a governance procedure

Who is able to do what?

What procedure needs to be followed to propose an action?

What procedure needs to be followed to pass that proposal?

This is what Rheingold was referring to as a “governance boot sector”
When a resource is shared, the most effective groups require that “those affected by the rules can participate in modifying the rules”

In other words, successful collective decision-making requires:

1) Operational and collective rules, defining what we’re allowed to do
2) Constitutional rules, the meta rules of how we change our governance

[Frey, Krafft, and Keegan 2019]
Technocratic autocracy

Despite the counter-culture technolibertarian leanings of early denizens of the internet [A Declaratation of the Independence of Cyberspace, 1996], most the software underlying most communities derives from a roles-and-permissions model in UNIX

Mods & administrators: roles that have specific powers

However, governance cannot be captured by this model; it focuses on *procedures* rather than *permissions* [Zhang, Hugh, and Bernstein 2020]

So, for now at least, governance is typically carried out on paper rather than in bits
Popular governance models

[https://opensource.guide/leadership-and-governance]

BDFL: “Benevolent Dictator for Life” who makes all final decisions.

Examples: Ethereum, Django, Swift, Ruby, Pandas, Ubuntu, Linux, SciPy, Perl

Meritocracy: top contributors are granted decision-making rights.
Policy decisions via committee vote.

Examples: Red Hat, StackOverflow

Issue: outspoken people get credit, disempowering many communities

Liberal contribution: allow as many contributors as possible, and use consensus-seeking for policy decisions

Examples: node.js and Rust
Popular governance models

Steering committee: regular elections from active contributors produce a small committee empowered to make decisions when consensus isn’t working.

Examples: Python (post-Guido), node.js (for resolving technical disputes)
What role does leadership play in peer production?

While open-source projects and collaborative wikis sound very decentralized, in practice, leadership hierarchies emerge. [Benkler, Shaw and Hill 2016]

As a system grows, it’s harder to become an admin [Shaw & Hill 2014]
Resolving conflict: juries

When there is bad behavior, must we rely on mods? Can we empower a jury of your peers?

Two communities that use this approach:

Sina Weibo: estimated 20,000–60,000 judges recruited from the user base who review cases of verbal abuse and personal attacks. About 2,000 expert judges review more complex cases such as rumor propagation.

League of Legends: judges at The Tribunal (now defunct) reviewed cases of AFK flaming, harassment, racial slurs, and more
Peer juries: complications

[Kou et al. 2017; Fan and Zhang 2020; Hu, Whiting and Bernstein 2021]

Users find the human-driven system more procedurally just than the platforms’ decisions or than algorithmic systems, but still have limited trust in each other:

“But why should I be judged by other ordinary Weibo users?”

“As far as I know they just let random players make random decisions over whether a player can continue to play [League of Legends] or not.”

Why is there less trust in these systems than in local, offline juries? What could be done about it? [1 min]
Ultimately…

Right now we lack widespread social computing support for governance procedures more complicated than simple votes. This is a big opportunity for design and innovation!

In the meantime, most communities write out their policies in a document and then carry them out by hand.
Decision making
Idea 1
Idea 2
Idea 3
Idea 4
Idea 5

How do we decide which one is best?
Voting

Idea 1

Idea 2

Idea 3

Idea 4

Idea 5

“Vote on your top two ideas”

Strengths: simple user model, useful for selecting a single best option

Weaknesses: known pathological cases (instant runoff voting improves), not great for producing a ranking
I can vote directly, or delegate my vote to a person or institution who I think knows more about the issue. They can then either vote or delegate their own votes.
Liquid democracy

Idea 1

Idea 2

Idea 3

Idea 4

Idea 5

Benefits: compromise between direct and representative democracy; made feasible by the web.

Weaknesses: not guaranteed to be better at decision-making than direct democracy [Kahng, Mackenzie, and Procaccia 2018]
<table>
<thead>
<tr>
<th>Idea</th>
<th>Strengths: gets more information per idea, allows ranking</th>
<th>Weaknesses: people tend to use the scale differently</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idea 1</td>
<td>“Rate each idea”</td>
<td></td>
</tr>
<tr>
<td>Idea 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idea 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idea 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idea 5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Likert Scale Rating

Idea 1

“Rate each idea”

Strengths: gets more information per idea, allows ranking

Weaknesses: people tend to use the scale differently (some are nice)

Idea 2

Idea 3

Idea 4

Idea 5
Likert Scale Rating

<table>
<thead>
<tr>
<th>Idea</th>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idea 1</td>
<td>😞 😐 😊</td>
<td>“Rate each idea”</td>
</tr>
<tr>
<td>Idea 2</td>
<td>😞 😐 😊</td>
<td>Strengths: gets more information per idea, allows ranking</td>
</tr>
<tr>
<td>Idea 3</td>
<td>😞 😐 😊</td>
<td>Weaknesses: people tend to use the scale differently (some are nice, some are mean)</td>
</tr>
<tr>
<td>Idea 4</td>
<td>😞 😐 😊</td>
<td></td>
</tr>
<tr>
<td>Idea 5</td>
<td>😞 😐 😊</td>
<td></td>
</tr>
</tbody>
</table>

Strengths: gets more information per idea, allows ranking

Weaknesses: people tend to use the scale differently (some are nice, some are mean)
Likert Scale Rating

Idea 1

“Rate each idea”

Strengths: gets more information per idea, allows ranking

Weaknesses: people tend to use the scale differently (some are nice, some are mean, many are extreme)

Idea 2

Idea 3

Idea 4

Idea 5
Likert Scale Rating

Idea 1 🙁 😐 😁 “Rate each idea”

Idea 2 😤 😐 😍 Strengths: gets more information per idea, allows ranking

Idea 3 😠 😐 😍 Weaknesses: people tend to use the scale differently (some are nice, some are mean, many are extreme), we have limited resolution into the differences between the 5s

Idea 4 😠 😐 😊

Idea 5 😠 😐 😅
<table>
<thead>
<tr>
<th>Idea</th>
<th>Likert Scale Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idea 1</td>
<td>😞 😞 😞 😞 😞 😞 😞 😞 😞</td>
</tr>
<tr>
<td>Idea 2</td>
<td>😞 😞 😞 😞 😞 😞 😞 😞 😞</td>
</tr>
<tr>
<td>Idea 3</td>
<td>😞 😞 😞 😞 😞 😞 😞 😞 😞</td>
</tr>
<tr>
<td>Idea 4</td>
<td>😞 😞 😞 😞 😞 😞 😞 😞 😞</td>
</tr>
<tr>
<td>Idea 5</td>
<td>😞 😞 😞 😞 😞 😞 😞 😞 😞</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Idea 6</th>
<th>Pho Avenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>💫 💫 💫 💫 🟠 375 reviews</td>
<td></td>
</tr>
<tr>
<td>$$ - Vietnamese</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Idea 3</th>
<th>Pho Vi Hoa</th>
</tr>
</thead>
<tbody>
<tr>
<td>💫 💫 💫 💫 🟠 1073 reviews</td>
<td></td>
</tr>
<tr>
<td>$$ - Vietnamese</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Idea 9</th>
<th>Hometown Noodle</th>
</tr>
</thead>
<tbody>
<tr>
<td>💫 💫 💫 💫 🟠 564 reviews</td>
<td></td>
</tr>
<tr>
<td>$ - Vietnamese, Noodles</td>
<td></td>
</tr>
</tbody>
</table>

As a result, not a ton of signal to use to tell these restaurants apart on Yelp.
Comparison ranking

Which of these two ideas do you prefer?

Idea 1 Idea 2
Comparison ranking

Which of these two ideas do you prefer?

Idea 4 Idea 3
Comparison ranking

Which of these two ideas do you prefer?

Idea 1 Idea 3
Comparison ranking

Which of these **hard** difficulty questions is a better midterm question?

NOTE: Some submissions have links. Please follow them and give each question the time and respect you would want given to your own.

Some messaging apps show you when the other person is typing. What is the name of this design pattern? What are the two requirements needed to make it successful?

Briefly explain the concept of honest signals. Provide a design example of a social computing system that maintains and deepens strong ties through fostering honest signals from its users. In your reply, outline the type of user behaviours that would take place within the system.

The left one The right one
Comparison ranking

But how do we turn a bunch of comparisons into a score or ranking per item?

Intuition:

If I beat something that’s known to be low ranked, I must not be terrible.
If I beat something that’s known to be high ranked, I must be really good.

But how do I know what’s low ranked and what’s high ranked?
TrueSkill and Elo

Elo is the system that was developed to rank chess players based on their win-loss records against each other.

Imagine that each player’s performance across a number of games is normally distributed. Sometimes they play amazingly, sometimes less so. Our goal is to estimate the mean of each player’s distribution. Each game is a draw from the players’ distributions.
TrueSkill and Elo

Intuitively, in Elo, we have some belief in the skill of each player before they play each other, and we update that belief based on the result of the game.

If white beats yellow, white’s skill score is updated by a multiplier α of $\alpha(25-10) = \alpha 15$.

α is tuned on how quickly the score should adapt based on recent games.
TrueSkill and Elo

In TrueSkill, the same general idea holds, except the entire algorithm is done by performing Bayesian inference on a generative model.

\[
p(\text{skill} | \text{result}) = \frac{p(\text{result} | \text{skill}) \cdot p(\text{skill})}{p(\text{result})}
\]

Bayes’ rule

Skill = 10

Skill = 25
TrueSkill and Elo

Strengths:

- Produces scores and a ranking, not just the top winner
- You get more carefully calibrated scores, so you can differentiate between top performers (avoids the Yelp problem)

Weaknesses:

- Requires many comparisons per idea to accurately estimate
How can internet technologies help us make our governments more accountable and effective?

- CrowdLaw [Beth Noveck]
Collaborative law authoring

WikiLegis: allow the public to comment on and edit new bills
Pitching problems

People pair with legislators to raise issues and draft plans.
Constitution writing

Iceland had the first crowdsourced constitution-writing process

Step One: gather ~1000 citizens into a minipublic to discuss the criteria they have for the new constitution

Step Two: 25 people sampled to draft the new constitution from around the country based on those goals

Step Three: open up the draft to the public for comments and feedback

Bill approved by two-thirds of voters, but then stalled in parliament 😞
Michael’s take

Open participation tools do feel resonant with the purported values of democracy and public participation in governance. However, they are by themselves not strong levers for change. They can be ignored, worked around, or argued illegitimate [Christín 2017, Landemore 2015]. They need to be socialized and treated as part of a socio-technical system of government change.
Summary

Social computing systems are great at eliciting a lot of opinions, but generally terrible and helping produce consensus toward a decision.

Different elicitation methods such as voting, liquid democracy, rating and comparison ranking provide possible solutions.

Deliberation is challenging because there are no stopping criteria. Structuring the rules of the debate can help overcome stalling and friction.

Crowdsourced democracy offers new tools for public participation, but need to be bought into by those in power.